A Proposal to Mitigate Energy Consumption through the Sustainable Design Process in Tunis





Energy consumption, Thermal comfort, Built Environment, architectural design, Numerical Simulations, Sustainable design process, Urban design


The main objective of this paper is to assess the energy efficiency of residential buildings in Tunis. To this end, three complementary studies were carried out at different levels. Initially, a diagnosis of the building’s adaptability to climate change at urban and architectural scales was established. The methodology adopted was based on indicators obtained following a cross-reference of environmental assessment tools. This made it possible to highlight the lacunary factors related to thermal comfort. According to this finding, the second research was set up to focus on outdoor thermal comfort. The methodology adopted is based on numerical simulations and calculations of comfort indices. The results demonstrated the importance of specific morphological indicators at the urban scale. Finally, the third research is interested in the architectural scale to assess the building’s thermal comfort and energy consumption. It was performed through numerical simulations. The results demonstrated the impact of specific physical indicators on buildings’ thermal comfort and energy behavior. Ultimately, this research highlighted the gap factors in urban and architectural design in Tunis. It detected the most significant physical and morphological indicators to be considered for sustainable urban design.


Download data is not yet available.


A.F.N.O.R. (1995). ISO N 7730 - Ambiances thermique modérées, Détermination des indices PMV et PPD et spécification des conditions de confort thermique[Moderate thermal environments Determination of PMV and PPd indices and specifiaction of thermal comfort conditions]. AFNOR, Paris.

Achour-Younsi, S., & Kharrat, F. (2016). Outdoor thermal comfort: impact of the geometry of an urban street canyon in a Mediterranean subtropical climate–case study Tunis, Tunisia. Procedia-Social and Behavioral Sciences, 216, 689-700. https://doi.org/10.1016/j.sbspro.2015.12.062

A.N.M.E. (2005). Label résidentiel: Initiation à la réglementation thermique et énergétique des logements neufs [Residential label: Introduction to thermal and energy regulations for new housing] . Agence Nationale pour la Maîtrise de l'Energie.

Ait-Ameur, K. (2002). Characterization of the microclimate in urban spaces through the validation of a "morpho-climatic" indicator system. Proceedings of PLEA, 306. The 19th Conference on Passive and Low Energy Architecture, Toulouse, France

Bouden, C., & Ghrab, N. (2005). An adaptative thermal comfort model for the Tunisian context: a field study results. Energy and Buildings, 37(9), 952-963. https://doi.org/10.1016/j.enbuild.2004.12.003

Bröde, P., Blazejczyk, K., Fiala, D., Havenith , G., Holmer, I., Jendritzky, G., & Kampmann, B. (2013). The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Industrial Health, 51(1), 16-24. https://doi.org/10.2486/indhealth.2012-0098

Carter, J., Cavan, G., Connelly, A., Guy, S., Handley, J., & Kazmierczak, A. (2015). Climate change and the city: Building capacity for urban adaptation. Progress in Planning, 95, 1-66. https://doi.org/10.1016/j.progress.2013.08.001

Chabchoub, A., & Kharrat, F. (2020). Towards energy efficiency in contemporary buildings from downtown Tunis. (L. Editore, Ed.) Sustainable Mediterranean Construction SMC, Focus on SDG 2030 City and Land, 12(1), 216-220.

Degelman, L. (2002). Which came first - building cooling loads or global warming? - a cause and effect examination. Building Services Engineering Research and Technology, 23(4), 259-267. https://doi.org/10.1191/0143624402bt049oa

Envirobat. (2012). Association Envirobat BDM. Retrieved from Villes et Aménagement durable, BDM - Bâtiments Durables Méditerranéens - Logements Collectifs: Retrieved from http://www.enviroboite.net/

Gauzin-Müller, D. (2009). L'architecture écologique du Vorarlberg [Ecological architecture of Vorarlberg]. un modèle social, économique et culturel. Paris: Éditions du Moniteur.

Girgis, N., Elariane, S., & Abd Elrazik, M. (2016). Evaluation of heat exhausts impacts on pedestrian thermal comfort. Sustainable Cities and Society, 27, 152-159. https://doi.org/10.1016/j.scs.2015.06.010

Goudie, A. (2018). Human impact on the natural environment. Wiley-Blackwell. ISBN: 978-1-119-40373-9.

Hutner, S., & Bruse, M. (2009). Numerical modeling of the urban climate - a preview on ENVI-met 4.0. 7th International Conference on Urban Climate ICUC - 7, 29. Yokohama - Japan.

Jin, H., Cui, P., Wong, N., & Ignatius, M. (2018). Assessing the effects of urban morphology parameters on microclimate in Singapore to control the urban heat island effect. Sustainability, 10(1), 206. https://doi.org/10.3390/su10010206

Jouini, N., Kharrat, F., & Achour-Younsi, S. (2019). Urban morphology and solar gains in cities in warm Mediterranean climate: Comparison of two collective residential complexes in Tunis, Tunisia. In S. Cham (Ed.), Euro-Mediterranean Conference of Environmental Integration, (pp. 2241-2245). https://doi.org/10.1007/978-3-030-51210-1_351

M.A.L.E. (2020). Troisième Communication Nationale de la Tunisie au titre de la Convention Cadre des Nations Unies sur les Changements Cimatiques [Third NAtional Communication of Tunisia under the United Nations Framework of Convention on Climate Change] Ministère des Affaires Locales et de l'Environnement. Tunis: Programme des Nations Unies pour le Développement PNUD. Retrieved from http://www.unfccc.int/sites/default/files/resource/Synthese%20TCN%20FR%20VF%20Tunisia.pdf

Madec, P. (2002). Architecture et qualité environnementale [Architecture and environmental quality]. Les Annales de la Recherche Urbaine(92), 140-142. https://doi.org/10.3406/aru.2002.2468

Magnier, L., & Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45(3), 739-746. https://doi.org/10.1016/j.buildenv.2009.08.016

Matisoff, D., Noonan, D., & Mazzolini, A. (2014). Performance or marketing benefits? The case of LEED certification. Environmental Science & Technology, 48(3), 2011-2007. https://doi.org/10.1021/es4042447

Mourid , A., El Alami , M., & Kuznik, F. (2018). Experimental investigation on thermal behavior and reduction of energy consumption in a real scale building by using phase change materials on its envelope. Sustainable Cities and Society, 41, 35-43. https://doi.org/10.1016/j.scs.2018.04.031

Sansen, M., Martinez, A., & Devillers, P. (2021). Mediterranean Morphologies in Hot Summer Conditions: Learning from France's "Glorious Thirty" Holiday Housing. Journal of Contemporary Urban Affairs, 5(1), 19-34. https://doi.org/10.25034/ijcua.2021.v5n1-2

Schrijvers, P. J. C., Jonker, H. J. J., De Roode, S. R., & Kenjereš, S. (2016). The effect of using a high-albedo material on the Universal Temperature Climate Index within a street canyon. Urban Climate, 17, 284-303. https://doi.org/10.1016/j.uclim.2016.02.005

Song, X., & Ye, C. (2017). Climate change adaptation pathways for residential buildings in southern China. Energy Procedia, 105, 3062-3067. https://doi.org/10.1016/j.egypro.2017.03.635

Svensson, M. K. (2004). Sky view factor analysis–implications for urban air temperature differences. Meteorological applications, 11(3), 201-211. https://doi.org/10.1017/S1350482704001288

Stagrum, A., Andenaes , E., Kvande, T., & Lohne , J. (2020). Climate change adaptation measures for buildings - A scoping review. Sustainability, 12(5), 1721. https://doi.org/10.3390/su12051721

UNEP. (2018). Global alliance for buildings and constrcution, Towards a zero-emission, efficient and resilient buildings and constrcution sector. Internationall Energy Agency . Global Status Report. Retrieved from http://www.unep.org/resources/report/global-status-report-2018

Viguié, V. (2020). Les villes et le climat: Bâtiments et urbanisme [Cities and Climate: Buildings ans Urban Planning]. (Géoscience, Ed.) Comptes rendus, 352(4-5), 363-372. https://doi.org/10.5802/crgeos.19

Wang, X., Chen, D., & Ren, Z. (2011). Global warming and its implication to emission reduction strategies for residential buildings. Building and Environment, 46(4), 871-883. https://doi.org/10.1016/j.buildenv.2010.10.016

Ye, G., Yang , C., Chen, Y., & Li , Y. (2003). A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET*). Building and Environment, 38(1), 33-44. https://doi.org/10.1016/S0360-1323(02)00027-6



How to Cite

Achour-Younsi, S., Chabchoub, A., Jouini, N. E. H., & Kharrat, F. (2022). A Proposal to Mitigate Energy Consumption through the Sustainable Design Process in Tunis. Journal of Contemporary Urban Affairs, 6(2), 193–205. https://doi.org/10.25034/ijcua.2022.v6n2-6