Mapping Tomorrow’s Cities: GeoAI Strategies for Sustainable Urban Planning and Land Use Optimization

Authors

DOI:

https://doi.org/10.25034/ijcua.2024.v8n1-9

Keywords:

Urbanization, Urban Planning, GeoAI Technologies, LULC Analytics, Sustainable Cities

Abstract

As urbanization continues to shape the world's landscape, concerns have intensified over environmental degradation and depletion of natural resources. Accordingly, international agendas emphasize managing urban sprawl for inclusive, resilient, and sustainable cities. On this basis, this study consists of exploring the nexus of urbanization and advanced technologies following a methodological approach based on a bibliometric analysis using the Dimensions Database to analyse research related to urban sprawl and LULC Changes from 1994 to the recent years; and a systematic review to synthesize existing literature on different methodologies integrating GeoAI technologies and LULC Analytics in the process of monitoring landscape, which optimizes Urban Planning and empowers predictive modelling to monitor environmental changes, therefore, promoting intelligent decision-making and inclusive growth via enabling the creation of targeted policies that address socio-economic disparities, environmental sustainability and infrastructure enhancement. By improving comprehension of scientific concepts, this article aims to fill the knowledge gap between urban studies and remote sensing using machine learning.

Downloads

Download data is not yet available.

References

Abd El-Kawy, O. R., Rød, J. K., Ismail, H. A., & Suliman, A. S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483–494. https://doi.org/10.1016/j.apgeog.2010.10.012

Abebe, G. A. (2013). Quantifying urban growth pattern in developing countries using remote sensing and spatial metrics: A case study in Kampala, Uganda [Master’s thesis, University of Twente]. University of Twente Student Theses. https://purl.utwente.nl/essays/64376

Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ashaari, Z. H. (2017). Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65–78. https://doi.org/10.1016/j.jag.2017.03.006

Agboola, O. P., Rasidi, M. H., Said, I., Abogan, S. O., & Adejuwon, A. S. (2018). Morphological and GIS-based land use Analysis: A Critical Exploration of a Rural Neighborhood. Journal of Contemporary Urban Affairs, 2(2), 106–121. https://doi.org/10.25034/ijcua.2018.4675

Alastal, A. I., & Shaqfa, A. H. (2022). GeoAI Technologies and Their Application Areas in Urban Planning and Development: Concepts, Opportunities and Challenges in Smart City (Kuwait, Study Case). Journal of Data Analysis and Information Processing, 10(2), 110–126. https://doi.org/10.4236/jdaip.2022.102007

Al-sharif, A. A. A., & Pradhan, B. (2013). Urban Sprawl Analysis of Tripoli Metropolitan City (Libya) Using Remote Sensing Data and Multivariate Logistic Regression Model. Journal of the Indian Society of Remote Sensing, 42(1), 149–163. https://doi.org/10.1007/s12524-013-0299-7

Araya, Y. H., & Cabral, P. (2010). Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549–1563. https://doi.org/10.3390/rs2061549

Barwicka, S., & Milecka, M. (2021). The Use of Selected Landscape Metrics to Evaluate the Transformation of the Rural Landscape as a Result of the Development of the Mining Function—A Case Study of the Puchaczów Commune. Sustainability, 13(21), 12279. https://doi.org/10.3390/su132112279

Beattie, L., & Haarhoff, E. (2018). Urban Growth, Liveability and Quality Urban Design: Questions about the Efficacy of Urban Planning Systems in Auckland, New Zealand. Journal of Contemporary Urban Affairs, 2(2), 12–23. https://doi.org/10.25034/ijcua.2018.3667

Belal, A. A., & Moghanm, F. S. (2011). Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya governorate, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 14(2), 73–79. https://doi.org/10.1016/j.ejrs.2011.09.001

Berling-Wolff, S., & Wu, J. (2004). Modeling urban landscape dynamics: A case study in Phoenix, USA. Urban Ecosystems, 7(3), 215–240. https://doi.org/10.1023/B:UECO.0000044037.23965.45

Bhatta, B. (2010). Analysis of Urban Growth and Sprawl from Remote Sensing Data. In Advances in Geographic Information Science. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-05299-6

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., & Tiede, D. (2014). Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014

Blaschke, T., Lang, S., Lorup, E., Strobl, J., & Zeil, P. (2000). Object-oriented image processing in an integrated GIS/remote sensing environment and perspectives for environmental applications. In A. Kremers & K. Greve (Eds.), Umweltinformation für Planung, Politik und Öffentlichkeit / Environmental information for planning, politics and the public (Vol. 2, pp. 555–570). Metropolis-Verlag.

Cengiz, S., Görmüş, S., & Oğuz, D. (2022). Analysis of the urban growth pattern through spatial metrics; Ankara City. Land Use Policy, 112, 105812. https://doi.org/10.1016/j.landusepol.2021.105812

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B

Congalton, R. G., & Green, K. (1993). A practical look at the sources of confusion in error matrix generation. Photogrammetric Engineering & Remote Sensing, 59(5), 641–644.

Dasgupta, P. (2001). Human Well-Being and the Natural Environment. https://doi.org/10.1093/0199247889.001.0001

Dechaicha, A., Daikh, A., & Alkama, D. (2021). Monitoring and Landscape Quantification of Uncontrolled Urbanisation in Oasis Regions: The Case of Adrar City in Algeria. Journal of Contemporary Urban Affairs, 5(2), 209–219. https://doi.org/10.25034/ijcua.2021.v5n2-5

Degife, A. W., Zabel, F., & Mauser, W. (2018). Assessing land use and land cover changes and agricultural farmland expansions in Gambella Region, Ethiopia, using Landsat 5 and Sentinel 2a multispectral data. Heliyon, 4(11), e00919. https://doi.org/10.1016/j.heliyon.2018.e00919

Devendran, A. A., & Lakshmanan, G. (2019). Analysis and Prediction of Urban Growth Using Neural-Network- Coupled Agent-Based Cellular Automata Model for Chennai Metropolitan Area, Tamil Nadu, India. Journal of the Indian Society of Remote Sensing, 47(9), 1515–1526. https://doi.org/10.1007/s12524-019-01003-8

Eastman, J. R., Van Fossen, M., & Solarzano, L. (2005). Transition Potential Modeling for Land Cover Change. In: Maguire DJ, Goodchild MF, Batty M (eds) GIS, Spatial Analysis and Modeling, Esri Press, 357–386.

Elmi, M., Rouhani, A., & Keshavarz, E. (2022). Landscape Metrics for Urbanization and Urban Land-Use Change Monitoring from Remote Sensing Images: A case of Shiraz Metropolis, Iran. 4(1), 43–50.

Epsteln, J., Payne, K., & Kramer, E. (2002). Techniques for Mapping Suburban Sprawl. Photogrammetric Engineering & Remote Sensing, 68(9), 913–918.

Esri. (2018). ArcGIS 10.6: Desktop ArcMap functionality matrix. Esri.

Estoque, R. C., Murayama, Y., & Akiyama, C. M. (2015). Pixel-based and object-based classifications using high- and medium-spatial-resolution imageries in the urban and suburban landscapes. Geocarto International, 30(10), 1113–1129. https://doi.org/10.1080/10106049.2015.1027291

Ghosh, S. (2019). A city growth and land-use/land-cover change: A case study of Bhopal, India. Modeling Earth Systems and Environment, 5(4), 1569–1578. https://doi.org/10.1007/s40808-019-00605-y

Halingali, V. R., & Kadi, A. S. (2012). Problems of urbanization in developing countries: A case study in India. International Journal of Research in Social Sciences, 3(1), 93–104.

Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability, 10(10), 3421. https://doi.org/10.3390/su10103421

Hembram, B., & Jana, N. C. (2022). Analyzing Urban Extension and Land Use Changes in Kalimpong Municipality, West Bengal Using Remote Sensing and GIS. Advances in Geographical and Environmental Sciences, 335–348. https://doi.org/10.1007/978-981-16-7410-5_21

Herold, M., Couclelis, H., & Clarke, K. C. (2005). The Role of Spatial Metrics in the Analysis and Modeling of Urban Land Use Change. Computers Environment and Urban Systems, 29(4), 369–399. https://doi.org/10.1016/j.compenvurbsys.2003.12.001

Hossein, Md. K., Ahmed, A., Uddin, M. J., Saifullah, A. S. M., Babu, Md. A. H., & Sarker, T. (2023). Prediction of land use and land cover changes (LULC) and urban growth analysis in Dhaka Metropolitan Area (DMA) using CA-Markov model and geospatial techniques. Arabian Journal of Geosciences, 16(8). https://doi.org/10.1007/s12517-023-11570-3

Islam, K., Rahman, M. F., & Jashimuddin, M. (2018). Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453. https://doi.org/10.1016/j.ecolind.2018.01.047

James, P. (2012). Simulating urban growth processes incorporating a potential model with spatial metrics. Ecological Indicators, 20, 82–91. https://doi.org/10.1016/j.ecolind.2012.02.003

Jat, M., Garg, P., & Khare, D. (2008). Modelling of urban growth using spatial analysis techniques: A case study of Ajmer city (India). International Journal of Remote Sensing, 29, 543–567. https://doi.org/10.1080/01431160701280983

Jensen, J. R., & Im, J. (2007). Remote Sensing Change Detection in Urban Environments. Geo-Spatial Technologies in Urban Environments, 7–31. https://doi.org/10.1007/978-3-540-69417-5_2

Jinguo Yuan, & Zheng Niu. (2008). Evaluation of atmospheric correction using FLAASH. 2008 International Workshop on Earth Observation and Remote Sensing Applications. https://doi.org/10.1109/EORSA.2008.4620341

Jokar Arsanjani, J., Helbich, M., & de Noronha Vaz, E. (2013). Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities, 32, 33–42. https://doi.org/10.1016/j.cities.2013.01.005

Kirati, A., Medjeldi, Z., Dechaicha, A., & Alkama, D. (2023). The Transition to Integrated Renewable Energy: A Framework for Low Energy Building Design. 6th International Conference of Contemporary Affairs in Architecture and Urbanism – Full Paper Proceedings of ICCAUA2023, 14-16 June 2023. https://doi.org/10.38027/iccaua2023en0168

Kivell, P. (2002). Land and the City. Routledge. https://doi.org/10.4324/9780203420232

Krishnaveni, K. S., & Anilkumar, P. P. (2022). How smart growth can curb urban sprawl: A case study of a rapidly urbanizing city in Kerala, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 1355–1360. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1355-2022

Lata, K. M., Rao, C. S., Prasad, V. K., Badarianth, K. V. S., & Rahgavasamy, V. (2001). Measuring urban sprawl: A case study of Hyderabad. GIS Development, 5(12), 26–29.

Liu, H., & Weng, Q. (2013). Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto International, 28(7), 582–593. https://doi.org/10.1080/10106049.2012.752530

Liu, P., & Biljecki, F. (2022). A review of spatially-explicit GeoAI applications in Urban Geography. International Journal of Applied Earth Observation and Geoinformation, 112, 102936. https://doi.org/10.1016/j.jag.2022.102936

Liu, Y. (2012). Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach. International Journal of Geographical Information Science, 26(1), 151–167. https://doi.org/10.1080/13658816.2011.577434

Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1–2), 146–160. https://doi.org/10.1016/j.rse.2006.02.010

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870. https://doi.org/10.1080/01431160600746456

Mcalpine, C. A., & Eyre, T. J. (2002). Landscape Ecology, 17(8), 711–728. https://doi.org/10.1023/A:1022902907827

McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 351. https://doi.org/10.2737/PNW-GTR-351

Mithun, S., Parween, S., Sahana, M., & Chattopadhyay, S. (2023). A Systematic Review on the Application of Geospatial Technology and Artificial Intelligence in Urban Growth Modeling. GIScience and Geo-Environmental Modelling, 15–42. https://doi.org/10.1007/978-3-031-21587-2_2

Mithun, S., Sahana, M., Chattopadhyay, S., Chatterjee, S., Islam, J., & Costache, R. (2022). Comparative framework for spatially explicit urban growth modeling for monitoring urban land-use efficiency and sustainable urban development (SDG 11.3.1): A study on Kolkata metropolitan area, India. Geocarto International, 37(27), 17933–17970. https://doi.org/10.1080/10106049.2022.2136259

Mondal, B., Das, D. N., & Dolui, G. (2015). Modeling spatial variation of explanatory factors of urban expansion of Kolkata: A geographically weighted regression approach. Modeling Earth Systems and Environment, 1(4). https://doi.org/10.1007/s40808-015-0026-1

Motlagh, Z. K., Lotfi, A., Pourmanafi, S., Ahmadizadeh, S., & Soffianian, A. (2020). Spatial modeling of land-use change in a rapidly urbanizing landscape in central Iran: Integration of remote sensing, CA-Markov, and landscape metrics. Environmental Monitoring and Assessment, 192(11). https://doi.org/10.1007/s10661-020-08647-x

Murray, A. T. (2010). Advances in Location Modeling: GIS Linkages and Contributions. Journal of Geographical Systems, 12(3), 335–354. https://doi.org/10.1007/s10109-009-0105-9

Nations, U. (2018). Sustainability. United Nations; United Nations. Retrieved September 20, 2023, from https://www.un.org/en/academic-impact/sustainability

Nazeer, M., Nichol, J. E., & Yung, Y.-K. (2014). Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. International Journal of Remote Sensing, 35(16), 6271–6291. https://doi.org/10.1080/01431161.2014.951742

Parker, D., Evans, T., & Meretsky, V. (2001). Measuring Emergent Properties of Agent-Based Landcover/Landuse Models using Spatial Metrics. In Proceedings of the 7th Annual Conference of the International Society for Computational Economics, New Haven,CT, USA, 28–29 June, 2001.

Perkins, T. (2012). Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery. Optical Engineering, 51(11), 111707. https://doi.org/10.1117/1.OE.51.11.111707

Perkins, T., Adler-Golden, S., Matthew, M., Berk, A., Anderson, G., Gardner, J., & Felde, G. (2005). Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm. Remote Sensing of Clouds and the Atmosphere X, 5979. https://doi.org/10.1117/12.626526

Platt, R. V., & Rapoza, L. (2008). An Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification∗. The Professional Geographer, 60(1), 87–100. https://doi.org/10.1080/00330120701724152

Punia, M., & Singh, L. (2011). Entropy Approach for Assessment of Urban Growth: A Case Study of Jaipur, INDIA. Journal of the Indian Society of Remote Sensing, 40(2), 231–244. https://doi.org/10.1007/s12524-011-0141-z

Advancements in Urban Environmental Studies. (2023). In Rahman, A., Sen Roy, S., Talukdar, S., & Shahfahad (Eds.): GIScience and Geo-environmental Modelling. Springer International Publishing. https://doi.org/10.1007/978-3-031-21587-2

Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS International Journal of Geo-Information, 7(4), 154. https://doi.org/10.3390/ijgi7040154

Ruben, G. B., Zhang, K., Dong, Z., & Xia, J. (2020). Analysis and Projection of Land-Use/Land-Cover Dynamics through Scenario-Based Simulations Using the CA-Markov Model: A Case Study in Guanting Reservoir Basin, China. Sustainability, 12(9), 3747. https://doi.org/10.3390/su12093747

Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of The Total Environment, 628–629, 1557–1566. https://doi.org/10.1016/j.scitotenv.2018.02.170

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689–704. https://doi.org/10.1016/j.rse.2012.06.006

Serasinghe Pathiranage, I. S., Kantakumar, L. N., & Sundaramoorthy, S. (2018). Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning. Chinese Geographical Science, 28(2), 274–286. https://doi.org/10.1007/s11769-018-0946-6

Shafizadeh-Moghadam, H., Minaei, M., Pontius Jr, R. G., Asghari, A., & Dadashpoor, H. (2021). Integrating a Forward Feature Selection algorithm, Random Forest, and Cellular Automata to extrapolate urban growth in the Tehran-Karaj Region of Iran. Computers, Environment and Urban Systems, 87, 101595. https://doi.org/10.1016/j.compenvurbsys.2021.101595

Tang, J., Wang, L., & Yao, Z. (2007). Spatio‐temporal urban landscape change analysis using the Markov chain model and a modified genetic algorithm. International Journal of Remote Sensing, 28(15), 3255–3271. https://doi.org/10.1080/01431160600962749

Tv, R., Aithal, B. H., & Sanna, D. D. (2012). Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation, 18, 329–343. https://doi.org/10.1016/j.jag.2012.03.005

Wang, D., Ma, R., Xue, K., & Loiselle, S. A. (2019). The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sensing, 11(2), 169. https://doi.org/10.3390/rs11020169

White, R., Engelen, G., Uljee, I., Lavalle, C., & Erlich, D. (1999). Developing an urban land use simulator for European cities. In K. Fullerton (Ed.), Proceedings of the 5th EC-GIS Workshop (pp. 179–190). European Commission, Joint Research Centre.

Wilson, B., & Chakraborty, A. (2013). The Environmental Impacts of Sprawl: Emergent Themes from the Past Decade of Planning Research. Sustainability, 5(8), 3302–3327. https://doi.org/10.3390/su5083302

Xia, T., Wu, W., Zhou, Q., Tan, W., Verburg, P., Yang, P., & Ye, L. (2018). Modeling the spatio-temporal changes in land uses and its impacts on ecosystem services in Northeast China over 2000–2050. Journal of Geographical Sciences, 28(11), 1611–1625. https://doi.org/10.1007/s11442-018-1532-7

Yang, Y., Xiao, P., Feng, X., & Li, H. (2017). Accuracy assessment of seven global land cover datasets over China. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 156–173. https://doi.org/10.1016/j.isprsjprs.2017.01.016

Yeh, A. G., & Li, X. (2001). Measurement and Monitoring of Urban Sprawl in a Rapidly Growing Region Using Entropy. Photogrammetric Engineering & Remote Sensing, 67(1), 83–90.

Zaki, R., Zaki, A., & Ahmed, S. (2011). Land Use and Land Cover Changes in Arid Region: The Case New Urbanized Zone, Northeast Cairo, Egypt. J. Geographic Information System, 3(3), 173–194. https://doi.org/10.4236/jgis.2011.33015

Zou, L., Liu, Y., Wang, J., Yang, Y., & Wang, Y. (2019). Land use conflict identification and sustainable development scenario simulation on China’s southeast coast. Journal of Cleaner Production, 238, 117899. https://doi.org/10.1016/j.jclepro.2019.117899

Downloads

Published

2024-06-30

How to Cite

Aidaoui, A., Dechaicha, A., Alkama, D., Menai, I., & Salah Salah, H. (2024). Mapping Tomorrow’s Cities: GeoAI Strategies for Sustainable Urban Planning and Land Use Optimization. Journal of Contemporary Urban Affairs, 8(1), 158–176. https://doi.org/10.25034/ijcua.2024.v8n1-9

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.